Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.304
Filtrar
1.
Dis Model Mech ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411252

RESUMO

Patched 1 (PTCH1) is the primary receptor for the sonic hedgehog (SHH) ligand and negatively regulates SHH signalling, an essential pathway in human embryogenesis. Loss-of-function mutations in PTCH1 are associated with altered neuronal development and the malignant brain tumour medulloblastoma. As a result of differences between murine and human development, molecular and cellular perturbations that arise from human PTCH1 mutations remain poorly understood. Here, we used cerebellar organoids differentiated from human induced pluripotent stem cells combined with CRISPR/Cas9 gene editing to investigate the earliest molecular and cellular consequences of PTCH1 mutations on human cerebellar development. Our findings demonstrate that developmental mechanisms in cerebellar organoids reflect in vivo processes of regionalisation and SHH signalling, and offer new insights into early pathophysiological events of medulloblastoma tumorigenesis without the use of animal models.


Assuntos
Neoplasias Cerebelares , Células-Tronco Pluripotentes Induzidas , Meduloblastoma , Humanos , Camundongos , Animais , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Proteínas Hedgehog/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transformação Celular Neoplásica , Carcinogênese/genética , Organoides/metabolismo , Receptores Patched
2.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37982457

RESUMO

Both hedgehog (Hh) and target of rapamycin complex 2 (TORC2) are central, evolutionarily conserved signaling pathways that regulate development and metabolism. In C. elegans, loss of the essential TORC2 component RICTOR (rict-1) causes delayed development, shortened lifespan, reduced brood, small size and increased fat. Here, we report that knockdown of both the hedgehog-related morphogen grd-1 and its patched-related receptor ptr-11 rescues delayed development in TORC2 loss-of-function mutants, and grd-1 and ptr-11 overexpression delays wild-type development to a similar level to that in TORC2 loss-of-function animals. These findings potentially indicate an unexpected role for grd-1 and ptr-11 in slowing developmental rate downstream of a nutrient-sensing pathway. Furthermore, we implicate the chronic stress transcription factor pqm-1 as a key transcriptional effector in this slowing of whole-organism growth by grd-1 and ptr-11. We propose that TORC2, grd-1 and ptr-11 may act linearly or converge on pqm-1 to delay organismal development.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Receptores Patched
3.
Sci Signal ; 16(807): eadd6834, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847757

RESUMO

Hedgehog (Hh) signaling controls growth and patterning during embryonic development and homeostasis in adult tissues. Hh binding to the receptor Patched (Ptc) elicits intracellular signaling by relieving Ptc-mediated inhibition of the transmembrane protein Smoothened (Smo). We uncovered a role for the lipid phosphatidic acid (PA) in the regulation of the Hh pathway in Drosophila melanogaster. Deleting the Ptc C-terminal tail or mutating the predicted PA-binding sites within it prevented Ptc from inhibiting Smo in wing discs and in cultured cells. The C-terminal tail of Ptc directly interacted with PA in vitro, an association that was reduced by Hh, and increased the amount of PA at the plasma membrane in cultured cells. Smo also interacted with PA in vitro through a binding pocket located in the transmembrane region, and mutating residues in this pocket reduced Smo activity in vivo and in cells. By genetically manipulating PA amounts in vivo or treating cultured cells with PA, we demonstrated that PA promoted Smo activation. Our findings suggest that Ptc may sequester PA in the absence of Hh and release it in the presence of Hh, thereby increasing the amount of PA that is locally available to promote Smo activation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Patched/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
4.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240278

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the deadliest neoplasm of the urinary tract, and we are still far from completely understanding ccRCC development and treatment. The renal tissue paraffin blocks (20) of patients with ccRCC were collected at the University Hospital in Split from 2019 to 2020, and tissue sections were stained with patched (PTCH), anti-smoothened (SMO) and anti-Sonic Hedgehog (SHH) antibodies. SHH was highly expressed (31.9%) in grade 1 tumour, it being higher than all other grades and the control (p < 0.001-p < 0.0001). The trend of a linear decrease in the expression of SHH was observed with the progression of the tumour grade (p < 0.0001). PTCH expression was significantly lower in grades 1 and 2 in comparison to the control (p < 0.01) and grade 4 (p < 0.0001). A significant increase in the expression of SMO was found in grade 4 compared to all other grades (p < 0.0001) and the control (p < 0.001). The strong expression of SHH was observed in carcinoma cells of the G1 stage with a diffuse staining pattern (>50% of neoplastic cells). Stroma and/or inflammatory infiltrate display no staining and no expression of SHH in G1 and G2, while mild focal staining (10-50% of neoplastic cells) was observed in G3 and G4. Patients with high PTCH and low SMO expression had significant time survival differences (p = 0.0005 and p = 0.029, respectively). Therefore, high levels of PTCH and low levels of SMO expression are important markers of better survival rates in ccRCC patients.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Carcinoma de Células Renais/genética , Receptores Patched/metabolismo , Transdução de Sinais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Renais/genética , Receptor Smoothened/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769003

RESUMO

Deleterious mutations in the X-linked Patched domain-containing 1 (PTCHD1) gene may account for up to 1% of autism cases. Despite this, the PTCHD1 protein remains poorly understood. Structural similarities to Patched family proteins point to a role in sterol transport, but this hypothesis has not been verified experimentally. Additionally, PTCHD1 has been suggested to be involved in Hedgehog signalling, but thus far, the experimental results have been conflicting. To enable a variety of biochemical and structural experiments, we developed a method for expressing PTCHD1 in Spodoptera frugiperda cells, solubilising it in glycol-diosgenin, and purifying it to homogeneity. In vitro and in silico experiments show that PTCHD1 function is not interchangeable with Patched 1 (PTCH1) in canonical Hedgehog signalling, since it does not repress Smoothened in Ptch1-/- mouse embryonic fibroblasts and does not bind Sonic Hedgehog. However, we found that PTCHD1 binds cholesterol similarly to PTCH1. Furthermore, we identified 13 PTCHD1-specific protein interactors through co-immunoprecipitation and demonstrated a link to cell stress responses and RNA stress granule formation. Thus, our results support the notion that despite structural similarities to other Patched family proteins, PTCHD1 may have a distinct cellular function.


Assuntos
Fibroblastos , Proteínas Hedgehog , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Fibroblastos/metabolismo , Receptores Patched/metabolismo , Transdução de Sinais , Colesterol/metabolismo , Proteínas de Membrana/metabolismo
6.
Acta Histochem ; 124(1): 151835, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34979374

RESUMO

Embryogenesis is modulated by numerous complex signaling cascades, which are essential for normal development. The Hedgehog (Hh) signaling pathway is part of these central cascades. As a homolog of Patched (Ptch)-1, Ptch2 initially did not appear to be as important as Ptch1. Recent reports have revealed that Ptch2 plays a crucial role in ligand-dependent feedback inhibition of Hh signaling in vertebrates. The role of Ptch2 in facial development remains unclear. Here, we investigated the detailed expression pattern of Ptch2 during craniofacial development in murine embryos based on in situ hybridization (ISH) studies of whole-mounts and sections, immunohistochemistry (IHC), and quantitative real-time PCR. We found that both Ptch2 mRNA and protein expression increased in a dynamic pattern in the facial development at mouse embryonic days 11-14.5. Moreover, distinct expression of Ptch2 was observed in the structures of the facial region, such as the tooth germ, Meckel's cartilage, and the follicles of vibrissae. These data, combined with our work in the macrostomia family, suggest that Ptch2 may play a critical role in facial development.


Assuntos
Proteínas Hedgehog , Desenvolvimento Maxilofacial , Receptor Patched-2 , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Receptores Patched/metabolismo , Receptor Patched-2/genética , Receptor Patched-2/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
7.
Methods Mol Biol ; 2374: 37-47, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34562241

RESUMO

We recently developed a simultaneous in situ quantitative imaging technique for cholesterol in both leaflets of the plasma membrane of mammalian cells. This ratiometric fluorescence technique allows real-time monitoring of the cholesterol transporter activity of plasma membrane-resident proteins in living cells. When applied to the hedgehog signaling system, it enables direct quantitative measurement of the cholesterol transporter activity of Patched1 and the effect of the hedgehog ligand on this activity.


Assuntos
Transdução de Sinais , Animais , Membrana Celular/metabolismo , Colesterol , Fluorescência , Proteínas Hedgehog , Proteínas de Membrana , Receptores Patched , Receptor Patched-1/metabolismo
8.
Methods Mol Biol ; 2374: 107-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34562247

RESUMO

Patched-1 (PTCH1), a tumor suppressor, serves as the receptor of Hedgehog (HH) ligand and negatively regulates the HH signaling pathway. Mutations of PTCH1 are implicated in many human cancers. Structural investigation revealed the mechanism of PTCH1-mediated HH signal regulation, further facilitating the therapeutic development of cancers. Here, we describe the expression and purification of a nearly full-length functional PTCH1 variant, PTCH1*. With purified PTCH1* protein, two forms of PTCH1*-Sonic Hedgehog (SHH) complexes were assembled, and their structures subsequently determined by cryo-electron microscope (cryo-EM).


Assuntos
Transdução de Sinais , Microscopia Crioeletrônica , Genes Supressores de Tumor , Proteínas Hedgehog/genética , Humanos , Receptores Patched , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Ligação Proteica
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(10): 1588-1592, 2021 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-34755677

RESUMO

OBJECTIVE: To investigate the role of G-protein coupled receptor Smoothened (Smo) in regulating proliferation and migration of adult neural stem cells (ANSCs) and explore the underlying mechanism. METHODS: Cultured ANSCs were treated with purmorphamine (PM, an agonist of Smo) or cyclopamine (CPM, an inhibitor of Smo), and the changes in cell proliferation migration abilities were assessed using cell counting kit-8 (CCK8) assay and wound healing assay, respectively. The mRNA expressions of membrane receptor Patched 1 (Ptch1), Smo, glioma-associated oncogene homolog 1 (Gli1), axon guidance cue slit1 (Slit1) and brain-derived neurotrophic factor (BDNF) in the treated cells were detected using real-time quantitative PCR (RT-PCR). RESULTS: PM significantly promoted the proliferation (P < 0.01) and migration of ANSCs (P < 0.01), and up-regulated the mRNA expressions of Ptch1, Smo, Gli1, Slit1 and BDNF. Treatment with CPM significantly inhibited the proliferation and migration of ANSCs. CONCLUSION: Modulating Smo activity can positively regulate the proliferation and migration of ANSCs possibly by regulating the expressions of BDNF and Slit1.


Assuntos
Proteínas Hedgehog , Células-Tronco Neurais , Receptor Smoothened , Animais , Proliferação de Células , Receptores Patched , Receptor Patched-1/genética , Ratos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Receptor Smoothened/genética , Proteína GLI1 em Dedos de Zinco/genética
10.
PLoS Genet ; 17(4): e1009457, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872306

RESUMO

Spatiotemporal restriction of signaling plays a critical role in animal development and tissue homeostasis. All stem and progenitor cells in newly hatched C. elegans larvae are quiescent and capable of suspending their development until sufficient food is supplied. Here, we show that ptr-18, which encodes the evolutionarily conserved patched-related (PTR)/patched domain-containing (PTCHD) protein, temporally restricts the availability of extracellular hedgehog-related protein to establish the capacity of progenitor cells to maintain quiescence. We found that neural progenitor cells exit from quiescence in ptr-18 mutant larvae even when hatched under starved conditions. This unwanted reactivation depended on the activity of a specific set of hedgehog-related grl genes including grl-7. Unexpectedly, neither PTR-18 nor GRL-7 were expressed in newly hatched wild-type larvae. Instead, at the late embryonic stage, both PTR-18 and GRL-7 proteins were first localized around the apical membrane of hypodermal and neural progenitor cells and subsequently targeted for lysosomal degradation before hatching. Loss of ptr-18 caused a significant delay in GRL-7 clearance, causing this protein to be retained in the extracellular space in newly hatched ptr-18 mutant larvae. Furthermore, the putative transporter activity of PTR-18 was shown to be required for the appropriate function of the protein. These findings not only uncover a previously undescribed role of PTR/PTCHD in the clearance of extracellular hedgehog-related proteins via endocytosis-mediated degradation but also illustrate that failure to temporally restrict intercellular signaling during embryogenesis can subsequently compromise post-embryonic progenitor cell function.


Assuntos
Caenorhabditis elegans/genética , Endocitose/genética , Proteínas Hedgehog/genética , Receptores Patched/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/genética , Larva/genética , Larva/crescimento & desenvolvimento , Mutação/genética , Células-Tronco Neurais/metabolismo , Transdução de Sinais/genética
11.
Mol Metab ; 47: 101172, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33513436

RESUMO

OBJECTIVE: Astrocytes are glial cells proposed as the main Sonic hedgehog (Shh)-responsive cells in the adult brain. Their roles in mediating Shh functions are still poorly understood. In the hypothalamus, astrocytes support neuronal circuits implicated in the regulation of energy metabolism. In this study, we investigated the impact of genetic activation of Shh signaling on hypothalamic astrocytes and characterized its effects on energy metabolism. METHODS: We analyzed the distribution of gene transcripts of the Shh pathway (Ptc, Gli1, Gli2, and Gli3) in astrocytes using single molecule fluorescence in situ hybridization combined with immunohistofluorescence of Shh peptides by Western blotting in the adult mouse hypothalamus. Based on the metabolic phenotype, we characterized Glast-CreERT2-YFP-Ptc-/- (YFP-Ptc-/-) mice and their controls over time and under a high-fat diet (HFD) to investigate the potential effects of conditional astrocytic deletion of the Shh receptor Patched (Ptc) on metabolic efficiency, insulin sensitivity, and systemic glucose metabolism. Molecular and biochemical assays were used to analyze the alteration of key pathways modulating energy metabolism, insulin sensitivity, glucose uptake, and inflammation. Primary astrocyte cultures were used to evaluate a potential role of Shh signaling in astrocytic glucose uptake. RESULTS: Shh peptides were the highest in the hypothalamic extracts of adult mice and a large population of hypothalamic astrocytes expressed Ptc and Gli1-3 mRNAs. Characterization of Shh signaling after conditional Ptc deletion in the YFP-Ptc-/- mice revealed heterogeneity in hypothalamic astrocyte populations. Interestingly, activation of Shh signaling in Glast+ astrocytes enhanced insulin responsiveness as evidenced by glucose and insulin tolerance tests. This effect was maintained over time and associated with lower blood insulin levels and also observed under a HFD. The YFP-Ptc-/- mice exhibited a lean phenotype with the absence of body weight gain and a marked reduction of white and brown adipose tissues accompanied by increased whole-body fatty acid oxidation. In contrast, food intake, locomotor activity, and body temperature were not altered. At the cellular level, Ptc deletion did not affect glucose uptake in primary astrocyte cultures. In the hypothalamus, activation of the astrocytic Shh pathway was associated with the upregulation of transcripts coding for the insulin receptor and liver kinase B1 (LKB1) after 4 weeks and the glucose transporter GLUT-4 after 32 weeks. CONCLUSIONS: Here, we define hypothalamic Shh action on astrocytes as a novel master regulator of energy metabolism. In the hypothalamus, astrocytic Shh signaling could be critically involved in preventing both aging- and obesity-related metabolic disorders.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Patched/metabolismo , Envelhecimento , Animais , Astrócitos/patologia , Metabolismo Energético/genética , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Neurônios/metabolismo , Obesidade , Receptores Patched/deficiência , Receptores Patched/genética , Transdução de Sinais , Ativação Transcricional
12.
Genome Biol ; 22(1): 33, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446260

RESUMO

BACKGROUND: Aberrant activation of the Hedgehog pathway drives tumorigenesis of many cancers, including glioblastoma. However, the sensitization mechanism of the G protein-coupled-like receptor smoothened (SMO), a key component of Hedgehog signaling, remains largely unknown. RESULTS: In this study, we describe a novel protein SMO-193a.a. that is essential for Hedgehog signaling activation in glioblastoma. Encoded by circular SMO (circ-SMO), SMO-193a.a. is required for sonic hedgehog (Shh) induced SMO activation, via interacting with SMO, enhancing SMO cholesterol modification, and releasing SMO from the inhibition of patched transmembrane receptors. Deprivation of SMO-193a.a. in brain cancer stem cells attenuates Hedgehog signaling intensity and suppresses self-renewal, proliferation in vitro, and tumorigenicity in vivo. Moreover, circ-SMO/SMO-193a.a. is positively regulated by FUS, a direct transcriptional target of Gli1. Shh/Gli1/FUS/SMO-193a.a. form a positive feedback loop to sustain Hedgehog signaling activation in glioblastoma. Clinically, SMO-193a.a. is more specifically expressed in glioblastoma than SMO and is relevant to Gli1 expression. Higher expression of SMO-193a.a. predicts worse overall survival of glioblastoma patients, indicating its prognostic value. CONCLUSIONS: Our study reveals that SMO-193a.a., a novel protein encoded by circular SMO, is critical for Hedgehog signaling, drives glioblastoma tumorigenesis and is a novel target for glioblastoma treatment.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Proteínas Hedgehog/genética , RNA Circular/genética , Transdução de Sinais/genética , Receptor Smoothened/genética , Animais , Neoplasias Encefálicas/patologia , Proliferação de Células , Transformação Celular Neoplásica , Modelos Animais de Doenças , Feminino , Glioblastoma/patologia , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores Patched/metabolismo , Receptor Smoothened/metabolismo , Células-Tronco
13.
J Eur Acad Dermatol Venereol ; 35(2): 396-402, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32564428

RESUMO

BACKGROUND: Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant genetic disorder. It is commonly caused by mutations in PTCH1 and chiefly characterized by multiple basal cell carcinomas (BCCs) developing prior to the age of 30 years. In rare cases, NBCCS presents with a late onset of BCC development. OBJECTIVE: To investigate BCC tumorigenesis in two brothers, who showed characteristic features of NBCCS but developed their first BCCs only after the age of 40 years. Two other siblings did not show signs of NBCCS. RESULTS: We obtained blood samples from four siblings and nine BCCs from the two brothers with NBCCS. Whole exome sequencing and RNA sequencing revealed loss of heterozygosity (LOH) of PTCH1 in eight out of nine tumours that consistently involved the same haplotype on chromosome 9. This haplotype contained a germinal splice site mutation in PTCH1 (NM_001083605:exon9:c.763-6C>A). Analysis of germline DNA confirmed segregation of this mutation with the disease. All BCCs harboured additional somatic loss-of-function (LoF) mutations in the remaining PTCH1 allele which are not typically seen in other cases of NBCCS. This suggests a hypomorphic nature of the germinal PTCH1 mutation in this family. Furthermore, all BCCs had a similar tumour mutational burden compared to BCCs of unrelated NBCCS patients while harbouring a higher number of damaging PTCH1 mutations. CONCLUSIONS: Our data suggest that a sequence of three genetic hits leads to the late development of BCCs in two brothers with NBCCS: a hypomorphic germline mutation, followed by somatic LOH and additional mutations that complete PTCH1 inactivation. These genetic events are in line with the late occurrence of the first BCC and with the higher number of damaging PTCH1 mutations compared to usual cases of NBCCS.


Assuntos
Síndrome do Nevo Basocelular , Carcinoma Basocelular , Neoplasias Cutâneas , Adulto , Síndrome do Nevo Basocelular/genética , Carcinoma Basocelular/genética , Genômica , Humanos , Masculino , Receptores Patched , Receptor Patched-1/genética , Irmãos , Neoplasias Cutâneas/genética
14.
Proc Natl Acad Sci U S A ; 117(46): 28838-28846, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139559

RESUMO

Activation of the Hedgehog pathway may have therapeutic value for improved bone healing, taste receptor cell regeneration, and alleviation of colitis or other conditions. Systemic pathway activation, however, may be detrimental, and agents amenable to tissue targeting for therapeutic application have been lacking. We have developed an agonist, a conformation-specific nanobody against the Hedgehog receptor Patched1 (PTCH1). This nanobody potently activates the Hedgehog pathway in vitro and in vivo by stabilizing an alternative conformation of a Patched1 "switch helix," as revealed by our cryogenic electron microscopy structure. Nanobody-binding likely traps Patched in one stage of its transport cycle, thus preventing substrate movement through the Patched1 sterol conduit. Unlike the native Hedgehog ligand, this nanobody does not require lipid modifications for its activity, facilitating mechanistic studies of Hedgehog pathway activation and the engineering of pathway activating agents for therapeutic use. Our conformation-selective nanobody approach may be generally applicable to the study of other PTCH1 homologs.


Assuntos
Receptor Patched-1/agonistas , Receptor Patched-1/metabolismo , Receptor Patched-1/ultraestrutura , Animais , Microscopia Crioeletrônica/métodos , Proteínas Hedgehog/metabolismo , Humanos , Receptores Patched/metabolismo , Transdução de Sinais/fisiologia , Anticorpos de Domínio Único/farmacologia
15.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066274

RESUMO

Gorlin syndrome is a skeletal disorder caused by a gain of function mutation in Hedgehog (Hh) signaling. The Hh family comprises of many signaling mediators, which, through complex mechanisms, play several important roles in various stages of development. The Hh information pathway is essential for bone tissue development. It is also the major driver gene in the development of basal cell carcinoma and medulloblastoma. In this review, we first present the recent advances in Gorlin syndrome research, in particular, the signaling mediators of the Hh pathway and their functions at the genetic level. Then, we discuss the phenotypes of mutant mice and Hh signaling-related molecules in humans revealed by studies using induced pluripotent stem cells.


Assuntos
Síndrome do Nevo Basocelular/genética , Testes Genéticos/métodos , Animais , Síndrome do Nevo Basocelular/diagnóstico , Síndrome do Nevo Basocelular/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Instabilidade Genômica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Receptores Patched/genética , Receptores Patched/metabolismo
16.
J Cell Sci ; 133(20)2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32989040

RESUMO

Sonic hedgehog (Shh) and its patched-smoothened receptor complex control a variety of functions in the developing central nervous system, such as neural cell proliferation and differentiation. Recently, Shh signaling components have been found to be expressed at the synaptic level in the postnatal brain, suggesting a potential role in the regulation of synaptic transmission. Using in utero electroporation of constitutively active and negative-phenotype forms of the Shh signal transducer smoothened (Smo), we studied the role of Smo signaling in the development and maturation of GABAergic transmission in the somatosensory cortex. Our results show that enhancing Smo activity during development accelerates the shift from depolarizing to hyperpolarizing GABA in a manner dependent on functional expression of potassium-chloride cotransporter type 2 (KCC2, also known as SLC12A5). On the other hand, blocking Smo activity maintains the GABA response in a depolarizing state in mature cortical neurons, resulting in altered chloride homeostasis and increased seizure susceptibility. This study reveals unexpected functions of Smo signaling in the regulation of chloride homeostasis, through control of KCC2 cell-surface stability, and the timing of the GABA excitatory-to-inhibitory shift in brain maturation.


Assuntos
Proteínas Hedgehog , Córtex Somatossensorial , Animais , Proteínas Hedgehog/metabolismo , Receptores Patched , Ratos , Receptor Smoothened/genética , Córtex Somatossensorial/metabolismo , Ácido gama-Aminobutírico
17.
Dev Cell ; 54(1): 92-105.e5, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544391

RESUMO

Evolutionarily conserved signaling pathways are crucial for adjusting growth, reproduction, and cell maintenance in response to altered environmental conditions or energy balance. However, we have an incomplete understanding of the signaling networks and mechanistic changes that coordinate physiological changes across tissues. We found that loss of the cAMP response element-binding protein (CREB) transcription factor significantly slows Caenorhabditis elegans' reproductive decline, an early hallmark of aging in many animals. Our results indicate that CREB acts downstream of the transforming growth factor ß (TGF-ß) Sma/Mab pathway in the hypodermis to control reproductive aging, and that it does so by regulating a Hedgehog-related signaling factor, WRT-10. Overexpression of hypodermal wrt-10 is sufficient to delay reproductive decline and oocyte quality deterioration, potentially acting via Patched-related receptors in the germline. This TGF-ß-CREB-Hedgehog signaling axis allows a key metabolic tissue to communicate with the reproductive system to regulate oocyte quality and the rate of reproductive decline.


Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Patched/metabolismo , Reprodução , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Hedgehog/genética , Oócitos/metabolismo , Receptores Patched/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
18.
Cancer Res ; 80(10): 1970-1980, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32060146

RESUMO

The Sonic Hedgehog (SHH) pathway plays a key role in cancer. Alterations of SHH canonical signaling, causally linked to tumor progression, have become rational targets for cancer therapy. However, Smoothened (SMO) inhibitors have failed to show clinical benefit in patients with cancers displaying SHH autocrine/paracrine expression. We reported earlier that the SHH receptor Patched (PTCH) is a dependence receptor that triggers apoptosis in the absence of SHH through a pathway that differs from the canonical one, thus generating a state of dependence on SHH for survival. Here, we propose a dual function for SHH: its binding to PTCH not only activates the SHH canonical pathway but also blocks PTCH-induced apoptosis. Eighty percent, 64%, and 8% of human colon, pancreatic, and lung cancer cells, respectively, overexpressed SHH at transcriptional and protein levels. In addition, SHH-overexpressing cells expressed all the effectors of the PTCH-induced apoptotic pathway. Although the canonical pathway remained unchanged, autocrine SHH interference in colon, pancreatic, and lung cell lines triggered cell death through PTCH proapoptotic signaling. In vivo, SHH interference in colon cancer cell lines decreased primary tumor growth and metastasis. Therefore, the antitumor effect associated to SHH deprivation, usually thought to be a consequence of the inactivation of the canonical SHH pathway, is, at least in part, because of the engagement of PTCH proapoptotic activity. Together, these data strongly suggest that therapeutic strategies based on the disruption of SHH/PTCH interaction in SHH-overexpressing cancers should be explored. SIGNIFICANCE: Sonic Hedgehog-overexpressing tumors express PTCH-induced cell death effectors, suggesting that this death signaling could be activated as an antitumor strategy.


Assuntos
Apoptose/fisiologia , Proteínas Hedgehog/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Patched/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Embrião de Galinha , Xenoenxertos , Humanos , Camundongos , Transdução de Sinais/fisiologia , Peixe-Zebra
19.
PLoS One ; 15(2): e0229362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32078657

RESUMO

In the mature rodent brain, Sonic Hedgehog (Shh) signaling regulates stem and progenitor cell maintenance, neuronal and glial circuitry and brain repair. However, the sources and distribution of Shh mediating these effects are still poorly characterized. Here, we report in the adult mouse brain, a broad expression pattern of Shh recognized by the specific monoclonal C9C5 antibody in a subset (11-12%) of CC1+ mature oligodendrocytes that do not express carbonic anhydrase II. These cells express also Olig2 and Sox10, two oligodendrocyte lineage-specific markers, but not PDGFRα, a marker of oligodendrocyte progenitors. In agreement with oligodendroglial cells being a source of Shh in the adult mouse brain, we identify Shh transcripts by single molecule fluorescent in situ hybridization in a subset of cells expressing Olig2 and Sox10 mRNAs. These findings also reveal that Shh expression is more extensive than originally reported. The Shh-C9C5-associated signal labels the oligodendroglial cell body and decorates by intense puncta the processes. C9C5+ cells are distributed in a grid-like manner. They constitute small units that could deliver locally Shh to its receptor Patched expressed in GFAP+ and S100ß+ astrocytes, and in HuC/D+ neurons as shown in PtcLacZ/+ reporter mice. Postnatally, C9C5 immunoreactivity overlaps the myelination peak that occurs between P10 and P20 and is down regulated during ageing. Thus, our data suggest that C9C5+CC1+ oligodendroglial cells are a source of Shh in the mouse postnatal brain.


Assuntos
Anticorpos Monoclonais/imunologia , Encéfalo/metabolismo , Proteínas Hedgehog/imunologia , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Animais , Encéfalo/imunologia , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/imunologia , Oligodendroglia/imunologia , Receptores Patched/imunologia , Receptores Patched/metabolismo
20.
Cell Death Differ ; 27(4): 1286-1299, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31527798

RESUMO

Sonic hedgehog (SHH) signaling is crucial for the maintenance of the physiological self-renewal of granule neuron progenitor cells (GNPs) during cerebellar development, and its dysregulation leads to oncogenesis. However, how SHH signaling is controlled during cerebellar development is poorly understood. Here, we show that Trim32, a cell fate determinant, is distributed asymmetrically in the cytoplasm of mitotic GNPs, and that genetic knockout of Trim32 keeps GNPs at a proliferating and undifferentiated state. In addition, Trim32 knockout enhances the incidence of medulloblastoma (MB) formation in the Ptch1 mutant mice. Mechanistically, Trim32 binds to Gli1, an effector of SHH signaling, via its NHL domain and degrades the latter through its RING domain to antagonize the SHH pathway. These findings provide a novel mechanism that Trim32 may be a vital cell fate regulator by antagonizing the SHH signaling to promote GNPs differentiation and a tumor suppressor in MB formation.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Cerebelo/embriologia , Cerebelo/metabolismo , Proteínas Hedgehog/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células , Células HEK293 , Humanos , Meduloblastoma/patologia , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Receptores Patched/metabolismo , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Ubiquitina-Proteína Ligases/química , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...